DS05-10171-2E

MEMORY CMOS 4M × 4 BIT FAST PAGE MODE DYNAMIC RAM

MB8116400A-50/-60/-70

CMOS 4,194,304 \times 4 BIT Fast Page Mode Dynamic RAM

DESCRIPTION

The Fujitsu MB8116400A is a fully decoded CMOS Dynamic RAM (DRAM) that contains 16,777,216 memory cells accessible in 4-bit increments. The MB8116400A features a "fast page" mode of operation whereby high-speed random access of up to 1,024-bits of data within the same row can be selected. The MB8116400A DRAM is ideally suited for mainframe, buffers, hand-held computers video imaging equipment, and other memory applications where very low power dissipation and high bandwidth are basic requirements of the design. Since the standby current of the MB8116400A is very small, the device can be used as a non-volatile memory in equipment that uses batteries for primary and/or auxiliary power.

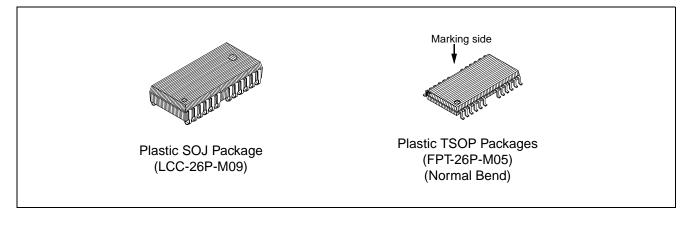
The MB8116400A is fabricated using silicon gate CMOS and Fujitsu's advanced four-layer polysilicon and twolayer aluminum process. This process, coupled with advanced stacked capacitor memory cells, reduces the possibility of soft errors and extends the time interval between memory refreshes. Clock timing requirements for the MB8116400A are not critical and all inputs are TTL compatible.

■ ABSOLUTE MAXIMUM RATINGS (See NOTE)

Parameter	Symbol	Value	Unit
Voltage at any pin relative to Vss	Vin, Vout	-0.5 to +7	V
Voltage of Vcc supply relative to Vss	Vcc	-0.5 to +7	V
Power Dissipation	PD	1.0	W
Short Circuit Output Current	_	50	mA
Operating Temperature	Торе	0 to 70	°C
Storage Temperature	Tstg	-55 to +125	°C

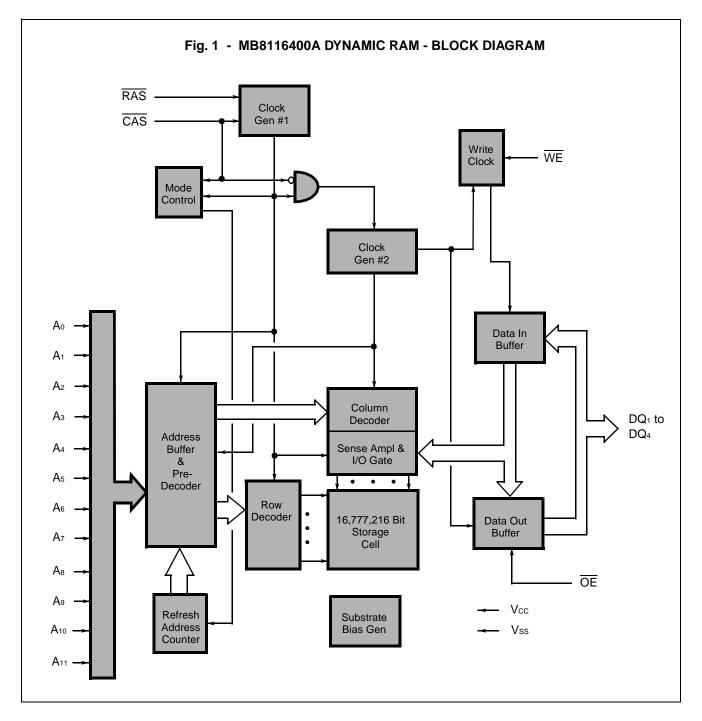
NOTE: Permanent device damage may occur if the above **Absolute Maximum Ratings** are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.


■ PRODUCT LINE & FEATURES

Parame	eter	MB8116400A-50	MB8116400A-50 MB8116400A-60			
RAS Access Time		50 ns max.	60 ns max.	70 ns max.		
Random Cycle Time		90 ns min.	110 ns min.	130 ns min.		
Address Access Time		25 ns max.	30 ns max.	35 ns max.		
CAS Access Time		13 ns max.	15 ns max.	17 ns max.		
Fast Page Mode Cycle Time		35 ns min.	40 ns min.	45 ns min.		
Low Power	Operating current	495 mW max.	357.5 mW max.			
Dissipation	Standby current	11 mW max. (1	. (CMOS level)			

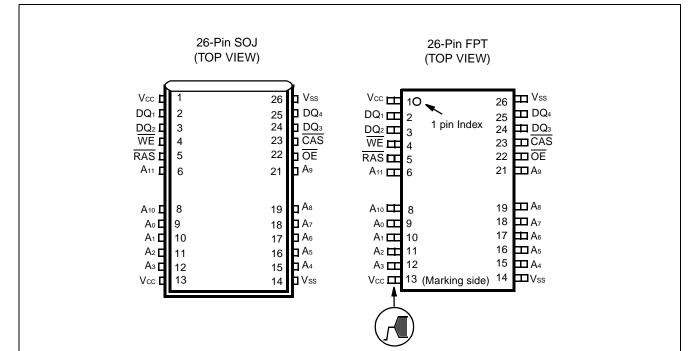
- 4,194,304 words \times 4 bit organization
- Silicon gate, CMOS, Advanced Capacitor Cell
- All input and output are TTL compatible
- 4096 refresh cycles every 65.6 ms


- Early write or \overline{OE} controlled write capability
- RAS only, CAS-before-RAS, or Hidden Refresh
- Fast page mode, Read-Modify-Write capability
- On chip substrate bias generator for high performance

PACKAGE

Package and Ordering Information

- 26-pin plastic (300 mil.) SOJ,order as MB8116400A-xxPJ
- 26-pin plastic (300 mil.) TSOP-II with normal bend leads,order as MB8116400A-xxPFTN



■ CAPACITANCE

 $(T_A = 25^{\circ}C, f = 1 \text{ MHz})$

Parameter	Symbol	Тур.	Max.	Unit
Input Capacitance, Ao toA11	CIN1	_	5	pF
Input Capacitance, RAS, CAS, WE, OE	CIN2		5	pF
Input/Output Capacitance, DQ1 to DQ4	Ουα		7	pF

PIN ASSIGNMENTS AND DESCRIPTIONS

Designator	Function
DQ1 to DQ4	Data Input/Output
WE	Write Enable.
RAS	Row address strobe.
A ₀ to A ₁₁	Address inputs.
Vcc	+5 volt power supply.
OE	Output enable.
CAS	Column address strobe.
Vss	Circuit ground.

RECOMMENDED OPERATING CONDITIONS

Parameter	Notes	Symbol	Min.	Тур.	Max.	Unit	Ambient Operating Temp.		
Supply Voltage	1	Vcc	4.5	5.0	5.5	V			
		Vss	0	0	0				
Input High Voltage, all inputs	1	Vін	2.4		6.5	V	0°C to +70°C		
Input Low Voltage, all inputs/outputs*	1	VIL	-0.3		0.8	V			

* : Undershoots of up to -2.0 volts with a pulse width not exceeding 20 ns are acceptable.

■ FUNCTIONAL OPERATION

ADDRESS INPUTS

Twenty-two input bits are required to decode any four of 16,777,216 cell addresses in the memory matrix. Since only twelve address bits (A₀ to A₁₁) are available, the row and column inputs are separately strobed by RAS and CAS as shown in Figure 1. First, twelve row address bits are input on pins A₀-through-A₁₁ and latched with the row address strobe (RAS) then, ten column address bits are input and latched with the column address strobe (CAS). Both row and column addresses must be stable on or before the falling edge of RAS and CAS, respectively. The address latches are of the flow-through type; thus, address information appearing after t_{RAH} (min.)+ t_T is automatically treated as the column address.

WRITE ENABLE

The read or write mode is determined by the logic state of \overline{WE} . When \overline{WE} is active Low, a write cycle is initiated; when \overline{WE} is High, a read cycle is selected. During the read mode, input data is ignored.

DATA INPUT

Input data is written into memory in either of three basic ways–an early write cycle, an \overline{OE} (delayed) write cycle, and a read-modify-write cycle. The falling edge of WE or CAS, whichever is later, serves as the input data-latch strobe. In an early write cycle, the input data (DQ₁-DQ₄) is strobed by CAS and the setup/hold times are referenced to CAS because WE goes Low before CAS. In a delayed write or a read-modify-write cycle, WE goes Low after CAS; thus, input data is strobed by WE and all setup/hold times are referenced to the write-enable signal.

DATA OUTPUT

The three-state buffers are TTL compatible with a fanout of two TTL loads. Polarity of the output data is identical to that of the input; the output buffers remain in the high-impedance state until the column address strobe goes Low. When a read or read-modify-write cycle is executed, valid outputs are obtained under the following conditions:

- tRAC : from the falling edge of RAS when tRCD (max.) is satisfied.
- tcac : from the falling edge of \overline{CAS} when tred is greater than tred (max.).
- tAA : from column address input when tRAD is greater than tRAD (max.).
- toEA : from the falling edge of \overline{OE} when \overline{OE} is brought Low after trac, tcac, or taa.

The data remains valid until either \overline{CAS} or \overline{OE} returns to a High logic level. When an early write is executed, the output buffers remain in a high-impedance state during the entire cycle.

FAST PAGE MODE OF OPERATION

The fast page mode of operation provides faster memory access and lower power dissipation. The fast page mode is implemented by keeping the same row address and strobing in successive column addresses. To satisfy these conditions, RAS is held Low for all contiguous memory cycles in which row addresses are common. For each fast page of memory, any of 1,024-bits can be accessed and, when multiple MB 8116400As are used, CAS is decoded to select the desired memory fast page. Fast page mode operations need not be addressed sequentially and combinations of read, write, and/or read-modify-write cycles are permitted.

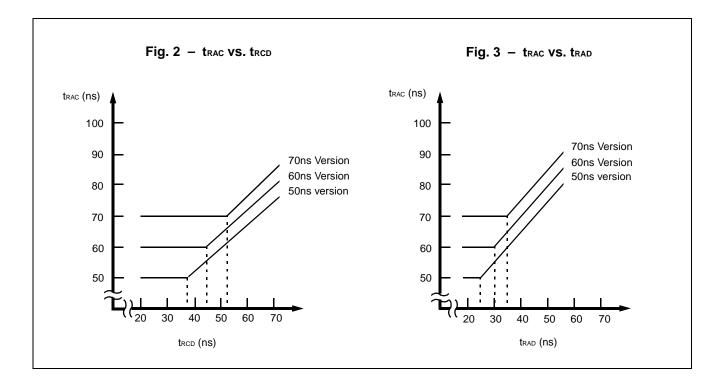
DC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.) Notes 3 Values Parameter Symbol Conditions Notes Unit Min. Тур. Max. Output high voltage Iон = -5.0 mA Vон 2.4 ____ ____ V Output low voltage Vol lo∟ = 4.2 mA 0.4 ____ ____ $0 V \leq V_{IN} \leq 5.5 V;$ $4.5 V \le V_{CC} \le 5.5 V;$ Input leakage current (any input) II(L) -10 10 $V_{ss} = 0 V$; All other pins μΑ under test = 0 V $0 V \le V_{OUT} \le 5.5 V;$ Output leakage current -10 O(L) 10 Data out disabled MB8116400A-50 90 Operating current RAS & CAS cycling; (Average power MB8116400A-60 CC1 75 mΑ $t_{RC} = min.$ supply current) 2 MB8116400A-70 65 Standby current $\overline{RAS} = \overline{CAS} = V_{H}$ TTL level 2.0 (Power supply mΑ CC2 $\overline{RAS} = \overline{CAS} \ge V_{CC} - 0.2$ CMOS level 1.0 current) MB8116400A-50 90 Refresh current#1 $\overline{CAS} = V_{H}, \overline{RAS}$ cycling; (Average power MB8116400A-60 ССЗ 75 mΑ $t_{RC} = min.$ supply current) 2 MB8116400A-70 65 MB8116400A-50 90 Fast page mode $\overline{RAS} = V_{\mathbb{L}}, \overline{CAS}$ cycling; MB8116400A-60 75 CC4 mΑ $t_{RC} = min.$ current 2 MB8116400A-70 65 MB8116400A-50 90 Refresh current#2 RAS cycling; (Average power CAS-before-RAS: MB8116400A-60 ICC5 75 mΑ supply current) 2 $t_{RC} = min.$ MB8116400A-70 65

■ AC CHARACTERISTICS

No.	Parameter Notes	Sym-		16400A- 50	MB8116400A- 60		MB8116400A- 70		Unit
		bol	Min.	Max.	Min.	Max.	Min.	Max.	
1	Time Between Refresh	tref	—	65.6		65.6	—	65.6	ms
2	Random Read/Write Cycle Time	trc	90	_	110		130	_	ns
3	Read-Modify-Write Cycle Time	trwc	126		150		174	—	ns
4	Access Time from RAS 6, 9	t rac	_	50	—	60	—	70	ns
5	Access Time from CAS 7, 9	t CAC	_	13		15		17	ns
6	Column Address Access Time 8, 9	taa	_	25		30		35	ns
7	Output Hold Time	tон	3	—	3		3	_	ns
8	Output Buffer Turn On Delay Time	ton	0	_	0		0	_	ns
9	Output Buffer Turn off Delay Time 10	toff	_	13	_	15		17	ns
10	Transition Time	t⊤	3	50	3	50	3	50	ns
11	RAS Precharge Time	t RP	30	_	40		50	_	ns
12	RAS Pulse Width	tras	50	100000	60	100000	70	100000	ns
13	RAS Hold Time	trsh	13	_	15		17	_	ns
14	CAS to RAS Precharge Time	t CRP	0	_	0		0	_	ns
15	RAS to CAS Delay Time11, 12	trcd	20	37	20	45	20	53	ns
16	CAS Pulse Width	tcas	13	_	15		17	_	ns
17	CAS Hold Time	tсsн	50	—	60		70	_	ns
18	CAS Precharge Time (Normal) 19	t CPN	10		10		10		ns
19	Row Address Set Up Time	tasr	0	_	0		0	_	ns
20	Row Address Hold Time	t rah	10	—	10		10	_	ns
21	Column Address Set Up Time	tASC	0		0		0		ns
22	Column Address Hold Time	tсан	13	_	15		15	_	ns
23	Column Address Hold Time from RAS	tar	35	_	35		35	_	ns
24	RAS to Column Address Delay Time	t rad	15	25	15	30	15	35	ns
25	Column Address to RAS Lead Time	t RAL	25		30		35	_	ns
26	Column Address to CAS Lead Time	tCAL	25	—	30		35	_	ns
27	Read Command and Set Up Time	trcs	0	—	0		0	—	ns
28	Read Comman <u>d Ho</u> ld Time Referenced to RAS	t rrh	0	_	0	_	0		ns
29	Read Comman <u>d Ho</u> ld Time Referenced to CAS	t RCH	0	_	0		0		ns
30	Write Command Set Up Time 15	twcs	0		0		0		ns
31	Write Command Hold Time	twcн	15		15		15		ns
32	Write Hold Time from RAS	twcr	35		35		35		ns

■ AC CHARACTERISTICS (Continued)

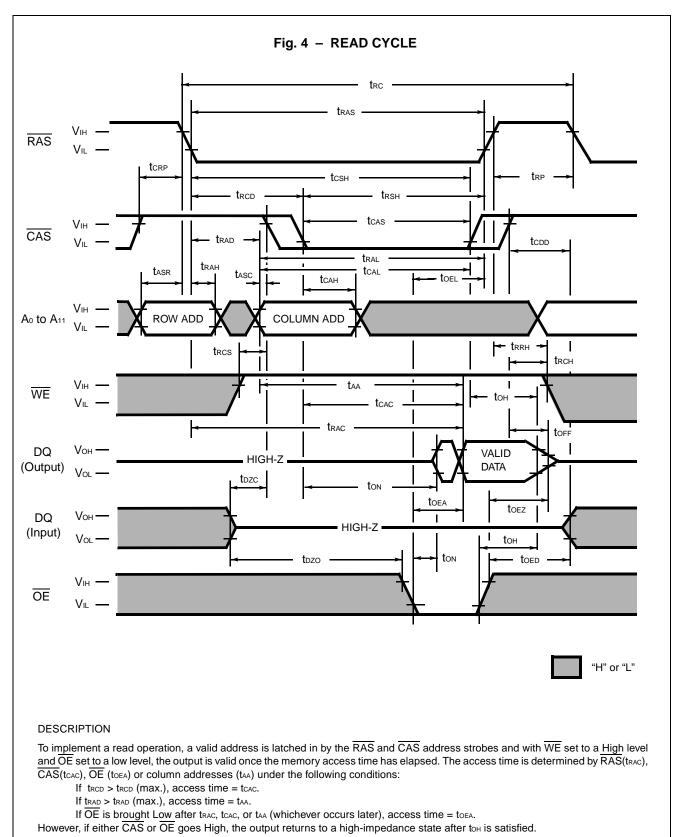

(At recommended operating conditions unless otherwise noted.)

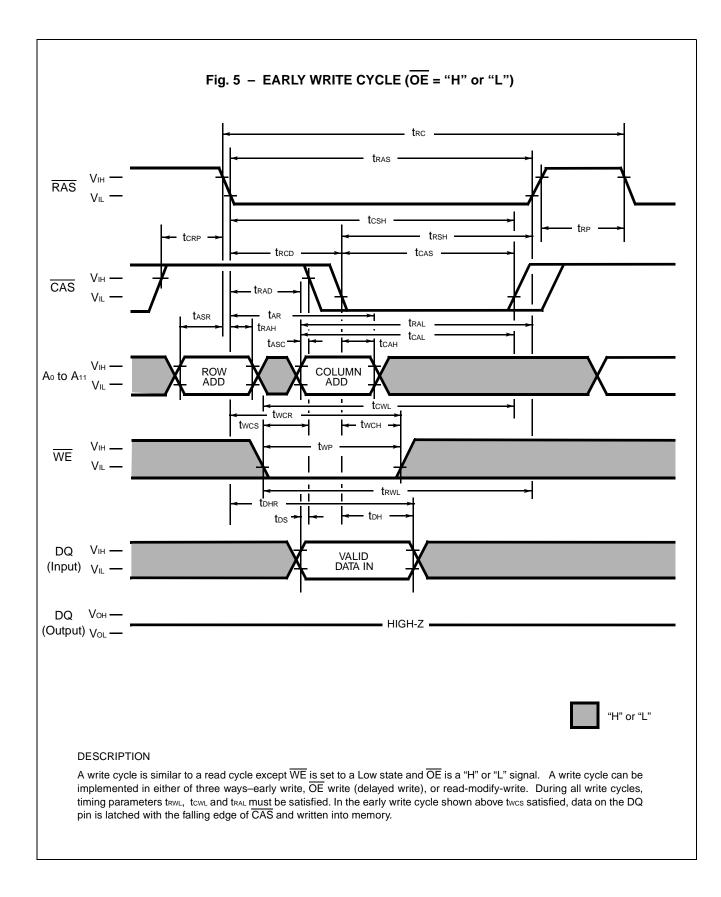
Notes 3, 4, 5

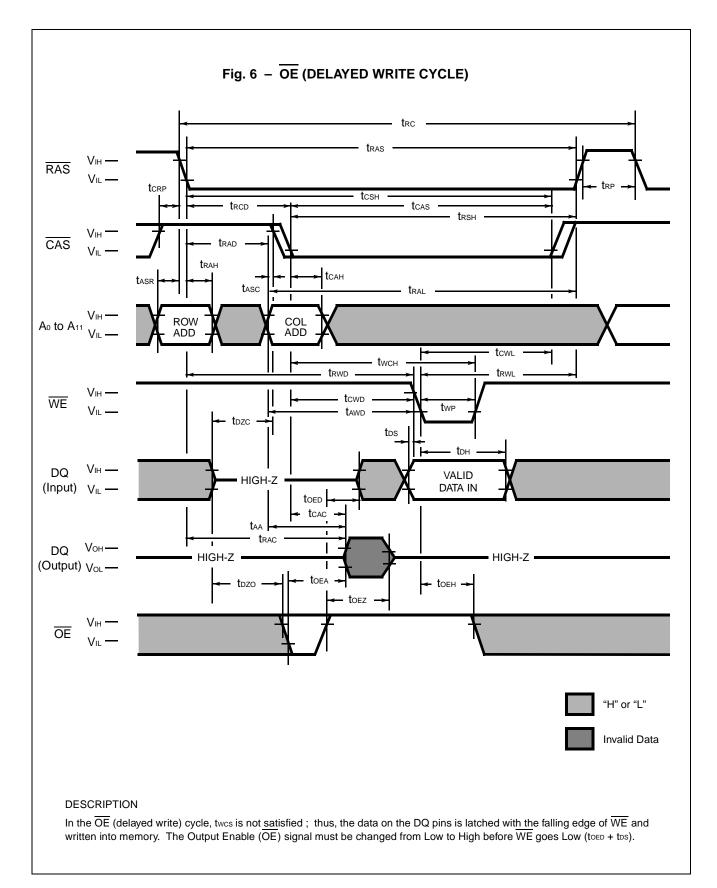
No.	Parameter	Notes	Sym-		16400A- 50	MB8116400A- 60		MB8116400A- 70		Unit
-			bol	Min.	Max.	Min.	Max.	Min.	Max.	
33	WE Pulse Width		twp	15		15		15		ns
34	Write Command to RAS Lead Tir	ne	t RWL	13	_	15		17	_	ns
35	Write Command to \overline{CAS} Lead Tir	ne	tcw∟	13		15		17		ns
36	DIN Set Up Time		tos	0		0		0		ns
37	DIN Hold Time		tdн	15	—	15		15	—	ns
38	Data Hold Time from RAS		t dhr	35		35		35		ns
39	RAS to WE Delay Time 20		trwd	68		80		92		ns
40	CAS to WE Delay Time 20		tcwd	31	_	35		39	_	ns
41	Column Address to WE Delay Time	20	tawd	43	_	50	_	57	_	ns
42	RAS Precharge Time to CAS Active Time (Refresh cycles)		t RPC	5	_	5	_	5	_	ns
43	CAS Set Up Time for CAS-before RAS Refresh	}-	tcsr	0	_	0	_	0	_	ns
44	CAS Hold Time for CAS-before- RAS Refresh		t CHR	10	_	10	_	12	_	ns
45	WE SetUp Time from RAS		twsr	0	_	0		0	_	ns
46	WE Hold Time from RAS		t whr	10	_	10		10	_	ns
47	Access Time from \overline{OE}	9	t OEA	_	13	—	15		17	ns
48	Outp <u>ut B</u> uffer Turn Off Delay form OE	10	toez	_	13	_	15	_	17	ns
49	OE to RAS Lead Time for Valid D	Data	t oel	5		5		7		ns
50	OE Hold Time Referenced to WE	16	tоен	5	_	5	_	5	_	ns
51	OE to Data in Delay Time		toed	13	_	15		17	_	ns
52	CAS to Data in Delay Time		tcdd	_	13	—	15		17	ns
53	DIN to CAS Delay Time	17	tdzc	0		0		0		ns
54	DIN to OE Delay Time	17	t dzo	0		0		0		ns
55	Fast Page Mode RAS Pulse widt	h	t rasp	_	100000		100000	_	100000	ns
60	Fast Page Mode Read/Write Cyc	le Time	t PC	35	—	40		45	—	ns
61	Fast Page Mode Read-Modify-W Cycle Time	rite	t PRWC	71	_	80	_	89	_	ns
62	Access Time from CAS Precharge	9, 18	t CPA	_	30		35	_	40	ns
63	Fast Page Mode CAS Precharge	Time	t CP	10		10		10		ns
64	Fast Page Mode RAS Hold Time from CAS Precharge		t RHCP	30	_	35	_	40	_	ns
65	Fa <u>st P</u> age Mode CAS Precharge to WE Delay Time		tcpwd	48	_	55	_	62	_	ns

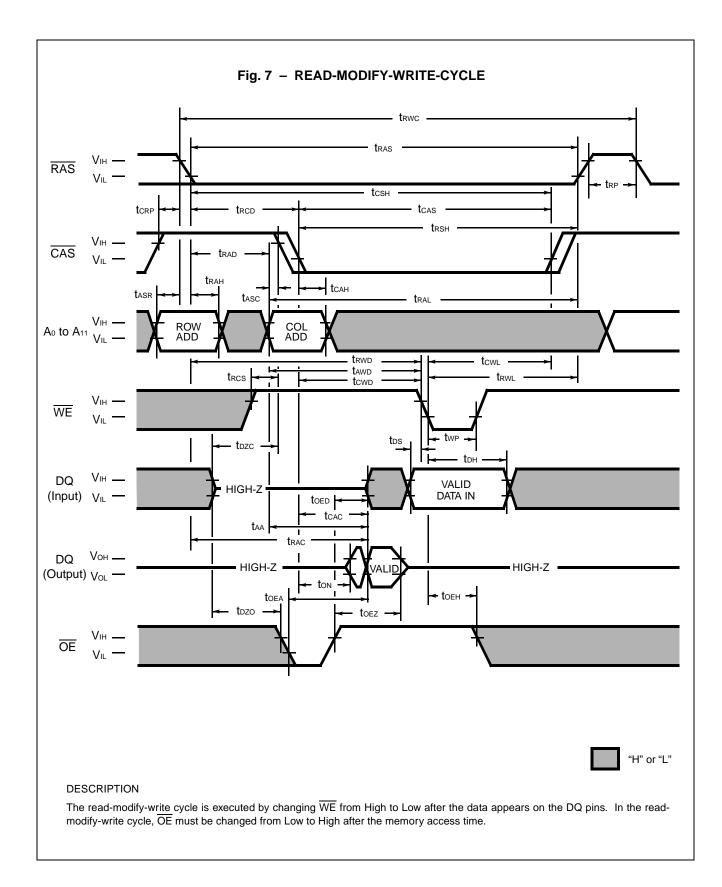
Notes: 1. Referenced to Vss.

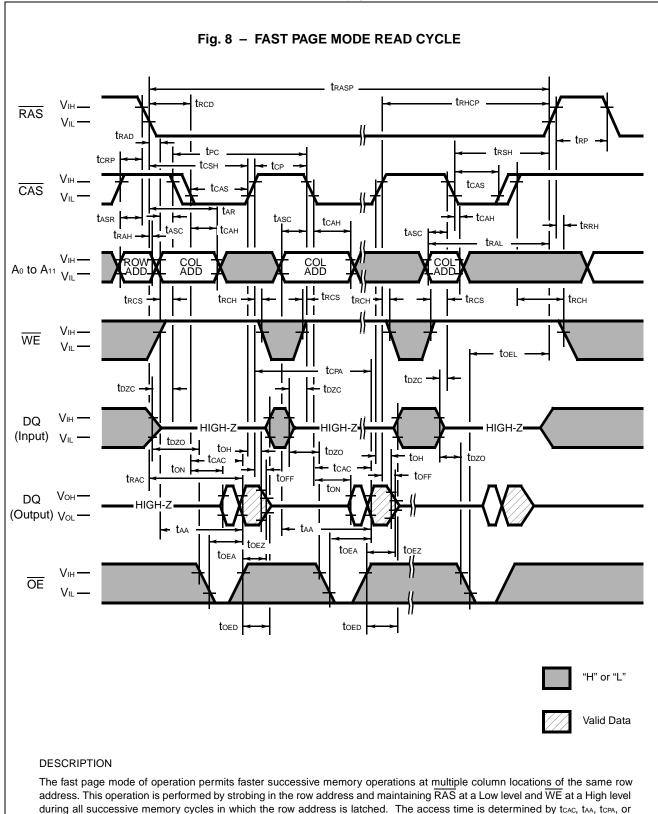
- 2. Icc depends on the output load conditions and cycle rates; The specified values are obtained with the output open. Icc depends on the number of address change as RAS= VIL, CAS= VIH and VIL > -0.3V. Icc1, Icc3, Icc4 and Icc5 are specified at one time of address change during RAS= VIL and CAS= VIH. Icc2 is specified during RAS=VIH and VIL > -0.3V.
- An initial pause (RAS=CAS=VIH) of 200 μs is required after power-up followed by any eight RAS-only cycles before proper device operation is achieved. In case of using internal refresh counter, a minimum of eight CAS-before-RAS initialization cycles instead of 8 RAS cycles are required.
- 4. AC characteristics assume $t_T = 5$ ns.
- 5. V_{IH} (min.) and V_{IL} (max.) are reference levels for measuring timing of input signals. Also transition times are measured between V_{IH} (min.) and V_{IL} (max.).
- Assumes that tRCD ≤ tRCD (max.), tRAD ≤ tRAD (max.). If tRCD is greater than the maximum recommended value shown in this table, tRAC will be increased by the amount that tRCD exceeds the value shown. Refer to Fig. 2 and 3.
- 7. If $trcd \ge trcd$ (max.), $trad \ge trad$ (max.), and $tasc \ge taa-tcac-tt$, access time is tcac.
- 8. If trad \geq trad (max.) and tasc \leq taa-tcac-tt, access time is taa.
- 9. Measured with a load equivalent to two TTL loads and 100 pF.
- 10. toFF and toEZ is specified that output buffer change to high impedance state.
- 11. Operation within the tRCD (max.) limit ensures that tRAC (max.) can be met. tRCD (max.) is specified as a reference point only; if tRCD is greater than the specified tRCD (max.) limit, access time is controlled exclusively by tCAC or tAA.
- 12. trcd (min.) = trah (min.)+ 2tr + tasc (min.).
- 13. Operation within the tRAD (max.) limit ensures that tRAC (max.) can be met. tRAD (max.) is specified as a reference point only; if tRAD is greater than the specified tRAD (max.) limit, access time is controlled exclusively by tCAC or tAA.
- 14. Either tRRH or tRCH must be satisfied for a read cycle.
- 15. twcs is specified as a reference point only. If twcs ≥ twcs (min.) the data output pin will remain High-Z state through entire cycle.
- 16. Assumes that twcs < twcs (min.).
- 17. Either tozc or tozo must be satisfied.
- 18. tcpa is access time from the selection of a new column address (that is caused by changing CAS from "L" to "H"). Therefore, if tcp is long, tcpa is longer than tcpa (max.).
- 19. Assumes that \overline{CAS} -before- \overline{RAS} refresh.
- 20. twcs, tcwb, t,Rwb and tawb are not restrictive operating parameters. They are included in the data sheet as an electrical characteristic only. If twcs > twcs (min.), the cycle is an early write cycle and Dout pin will maintain high impedance state thoughout the entire cycle. If t cwb > t cwb (min.), tRwb > t Rwb (min.), and tawb > t awb (min.), the cycle is a read modify-write cycle and data from the selected cell will appear at the Dout pin. If neither of the above conditions is satisfied, the cycle is a delayed write cycle and invalid data will appear the Dout pin , and write operation can be executed by satisfying tRWL, tcwL, and tRAL specifications.

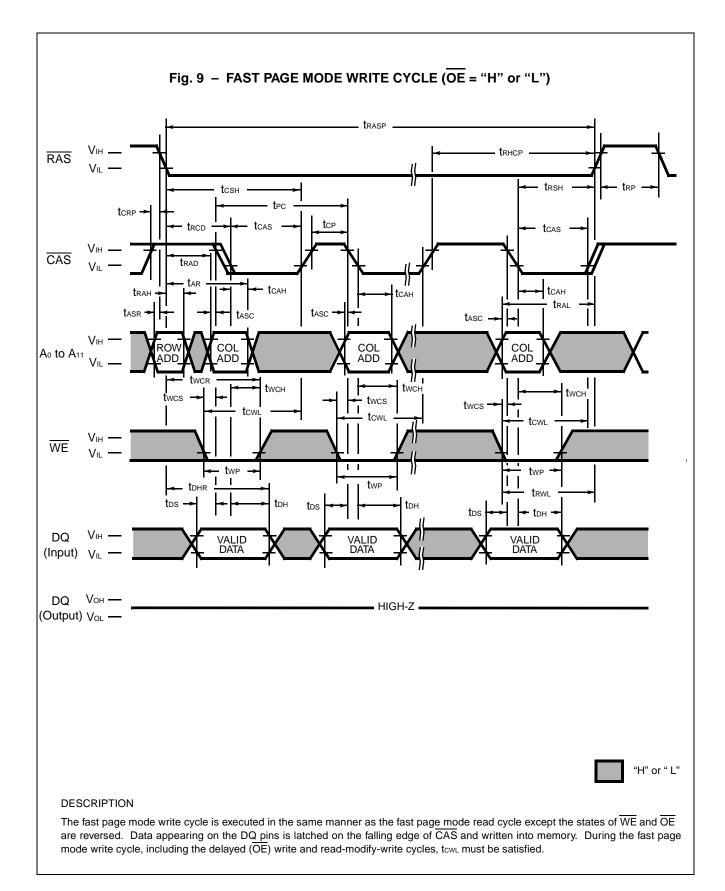


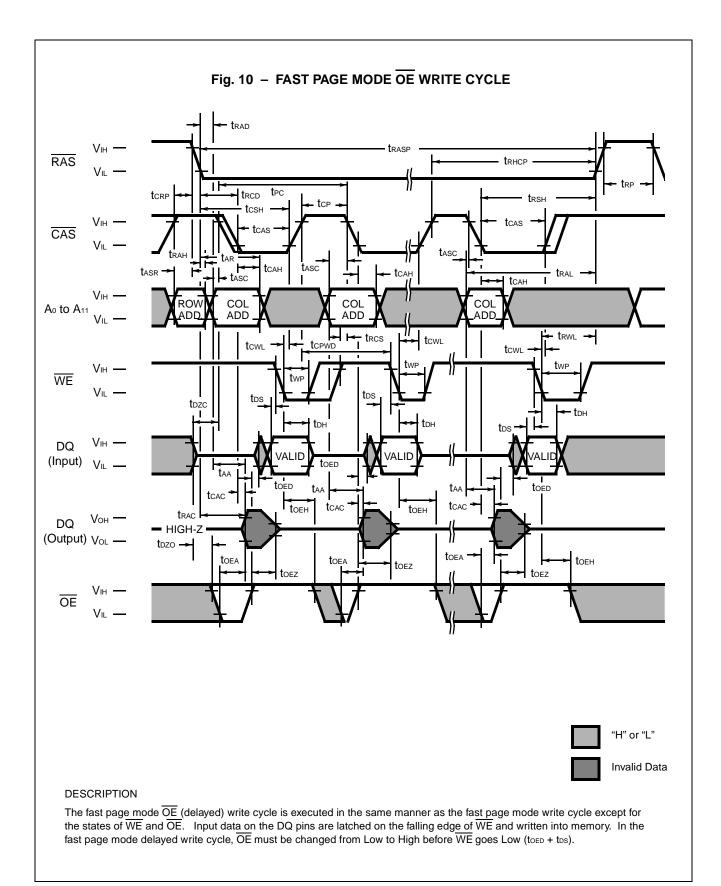

■ FUNCTIONAL TRUTH TABLE

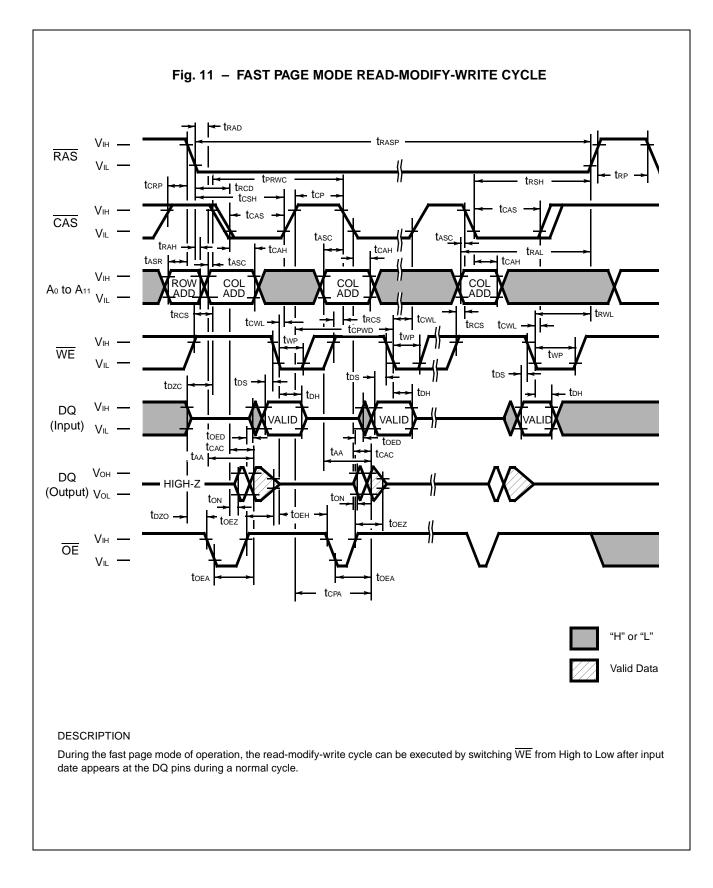

	Clock Input			Address		Input	Data			
Operation Mode	RAS	CAS	WE	OE	Row	Col- umn	Input	Output	Refresh	Note
Standby	Н	Н	Х	Х	_	—	—	High-Z	_	
Read Cycle	L	L	Н	L	Valid	Valid	—	Valid	Yes*	trcs ≥ trcs (min.)
Write Cycle (Early Write)	L	L	L	Х	Valid	Valid	Valid	High-Z	Yes*	twcs ≥ twcs (min.)
Read-Modify- Write Cycle	L	L	H→L	L→H	Valid	Valid	Valid	Valid	Yes*	
RAS-only Refresh Cycle	L	Н	Х	Х	Valid	_		High-Z	Yes	
CAS-before-RAS Refresh Cycle	L	L	Н	Х	_	_		High-Z	Yes	tcsr ≥ tcsr (min.)
Hidden Refresh Cycle	H→L	L	H→X	L		_		Valid	Yes	Previous data is kept.

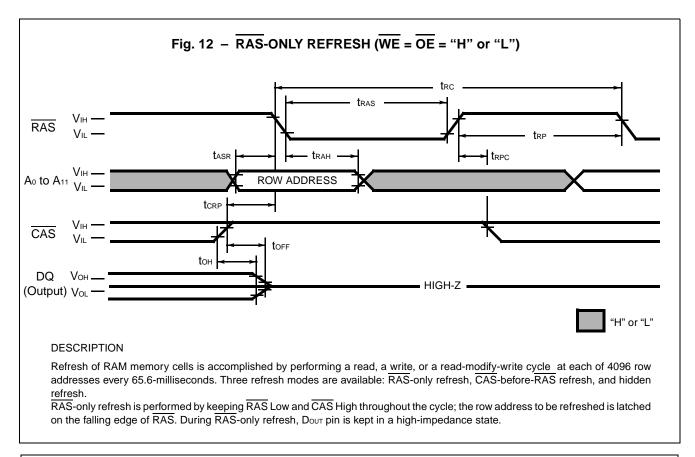

X : "H" or "L"

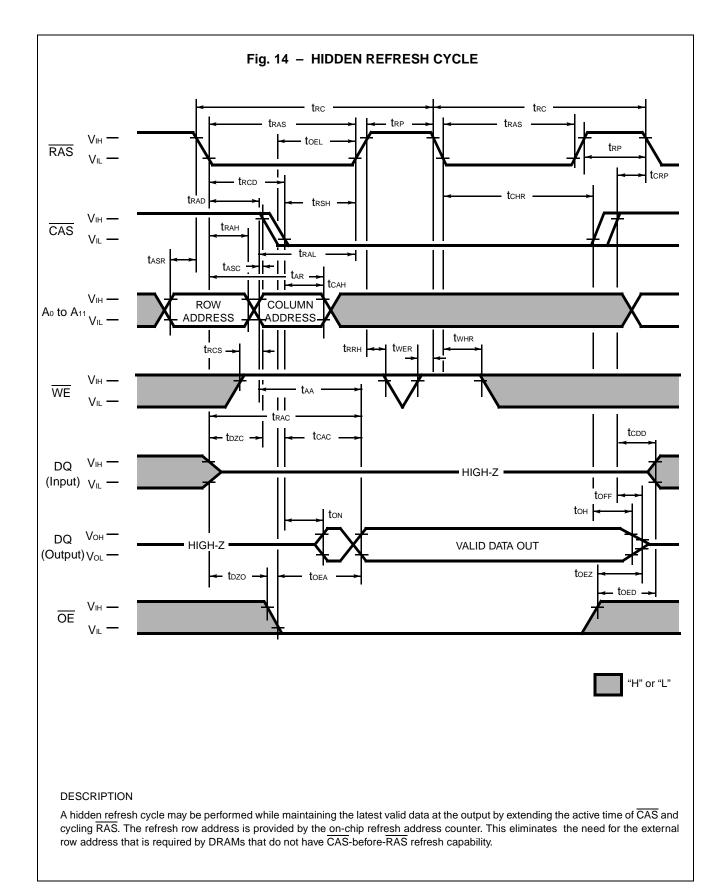

* : It is impossible in Fast Page Mode.

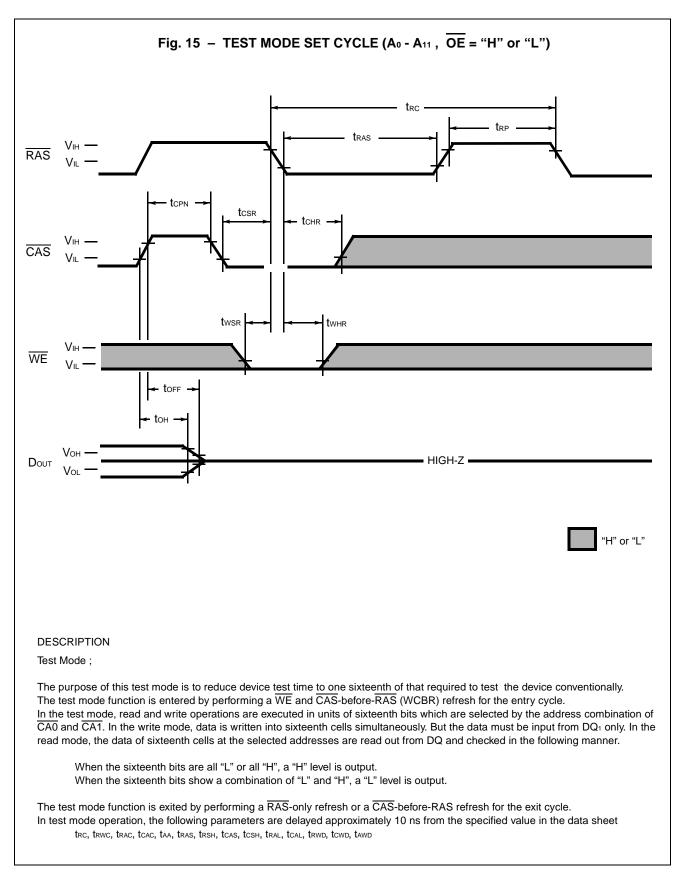


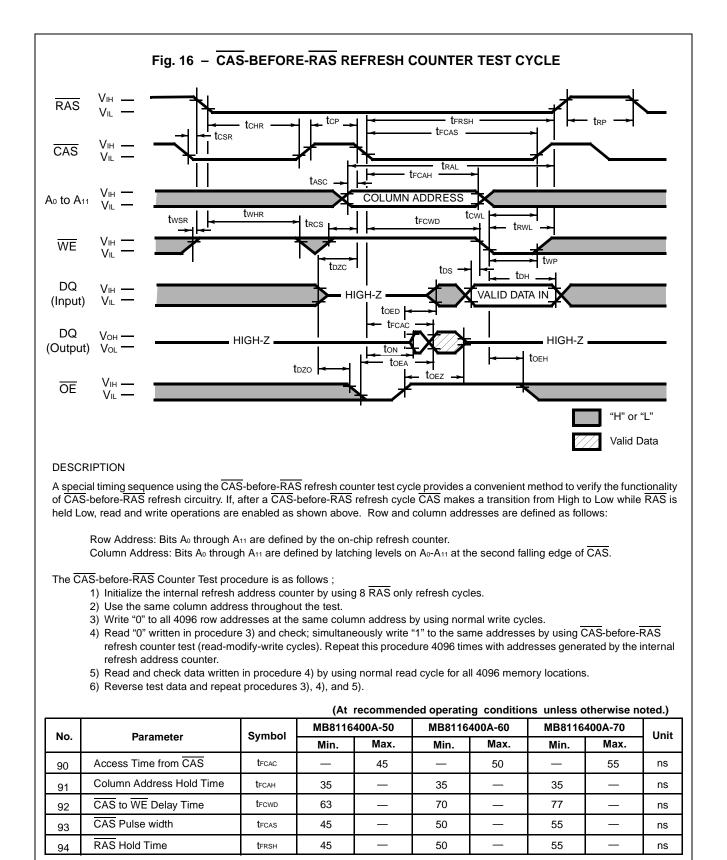


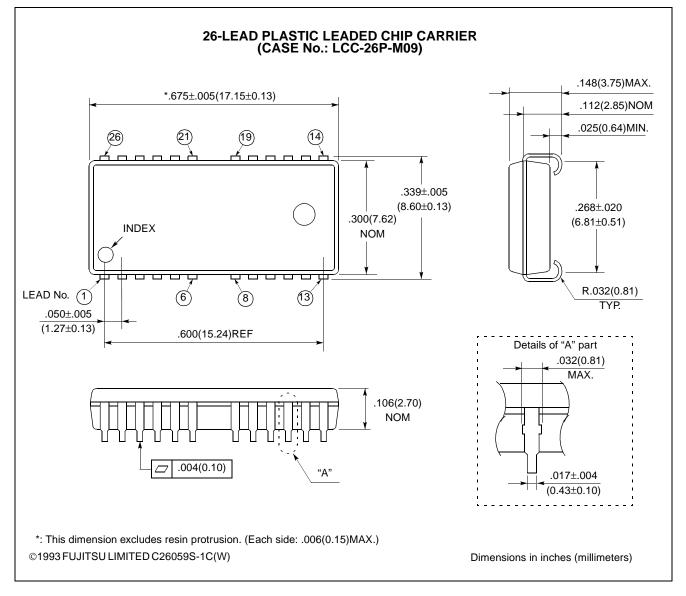




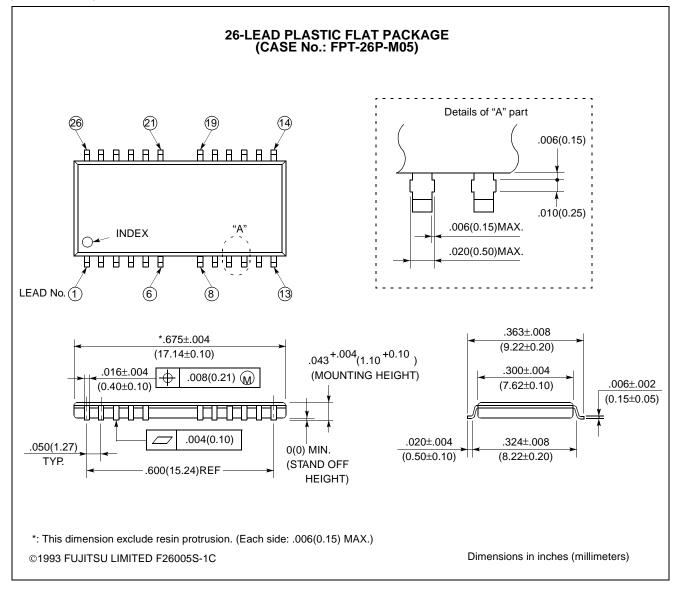








Note. Assumes that \overline{CAS} -before- \overline{RAS} refresh counter test cycle only.


■ PACKAGE DIMENSIONS

(Suffix: -PJ)

■ PACKAGE DIMENSIONS (Continued)

(Suffix: -PFTN)

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 4-1-1, Kamikodanaka Nakahara-ku, Kawasaki-shi Kanagawa 211-88, Japan Tel: (044) 754-3753 Fax: (044) 754-3332

North and South America

FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, U.S.A. Tel: (408) 922-9000 Fax: (408) 432-9044/9045

Europe

FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 63303 Dreieich-Buchschlag Germany Tel: (06103) 690-0 Fax: (06103) 690-122

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LIMITED No. 51 Bras Basah Road, Plaza By The Park, #06-04 to #06-07 Singapore 189554 Tel: 336-1600 Fax: 336-1609

F9608 © FUJITSU LIMITED Printed in Japan All Rights Reserved.

Circuit diagrams utilizing Fujitsu products are included as a means of illustrating typical semiconductor applications. Complete information sufficient for construction purposes is not necessarily given.

The information contained in this document has been carefully checked and is believed to be reliable. However, Fujitsu assumes no responsibility for inaccuracies.

The information contained in this document does not convey any license under the copyrights, patent rights or trademarks claimed and owned by Fujitsu.

Fujitsu reserves the right to change products or specifications without notice.

No part of this publication may be copied or reproduced in any form or by any means, or transferred to any third party without prior written consent of Fujitsu.

The information contained in this document are not intended for use with equipments which require extremely high reliability such as aerospace equipments, undersea repeaters, nuclear control systems or medical equipments for life support.